Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell Metab ; 34(6): 857-873.e9, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1926324

ABSTRACT

It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Diabetes Mellitus , Diabetic Nephropathies , Humans , Kidney/metabolism , Organoids , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
2.
Blood Cancer J ; 11(12): 202, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1585877

ABSTRACT

There is evidence of reduced SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies. We hypothesized that tumor and treatment-related immunosuppression can be depicted in peripheral blood, and that immune profiling prior to vaccination can help predict immunogenicity. We performed a comprehensive immunological characterization of 83 hematological patients before vaccination and measured IgM, IgG, and IgA antibody response to four viral antigens at day +7 after second-dose COVID-19 vaccination using multidimensional and computational flow cytometry. Health care practitioners of similar age were the control group (n = 102). Forty-four out of 59 immune cell types were significantly altered in patients; those with monoclonal gammopathies showed greater immunosuppression than patients with B-cell disorders and Hodgkin lymphoma. Immune dysregulation emerged before treatment, peaked while on-therapy, and did not return to normalcy after stopping treatment. We identified an immunotype that was significantly associated with poor antibody response and uncovered that the frequency of neutrophils, classical monocytes, CD4, and CD8 effector memory CD127low T cells, as well as naive CD21+ and IgM+D+ memory B cells, were independently associated with immunogenicity. Thus, we provide novel immune biomarkers to predict COVID-19 vaccine effectiveness in hematological patients, which are complementary to treatment-related factors and may help tailoring possible vaccine boosters.


Subject(s)
Biomarkers/blood , COVID-19 Vaccines , COVID-19/immunology , Hematologic Neoplasms/complications , Immunocompromised Host/immunology , Adult , Aged , Aged, 80 and over , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Vaccine Efficacy
3.
Front Immunol ; 12: 767376, 2021.
Article in English | MEDLINE | ID: covidwho-1556073

ABSTRACT

Evidence supports a role of complement anaphylatoxin C5a in the pathophysiology of COVID-19. However, information about the evolution and impact of C5a levels after hospital discharge is lacking. We analyzed the association between circulating C5a levels and the clinical evolution of hospitalized patients infected with SARS-CoV-2. Serum C5a levels were determined in 32 hospitalized and 17 non-hospitalized patients from Clinica Universidad de Navarra. One hundred and eighty eight serial samples were collected during the hospitalization stay and up to three months during the follow-up. Median C5a levels were 27.71 ng/ml (25th to 75th percentile: 19.35-34.96) for samples collected during hospitalization, versus 16.76 ng/ml (12.90-25.08) for samples collected during the follow-up (p<0.001). There was a negative correlation between serum C5a levels and the number of days from symptom onset (p<0.001). C5a levels also correlated with a previously validated clinical risk score (p<0.001), and was associated with the severity of the disease (p<0.001). An overall reduction of C5a levels was observed after hospital discharge. However, elevated C5a levels persisted in those patients with high COVID-19 severity (i.e. those with a longest stay in the hospital), even after months from hospital discharge (p=0.020). Moreover, high C5a levels appeared to be associated with the presence of long-term respiratory symptoms (p=0.004). In conclusion, serum C5a levels remain high in severe cases of COVID-19, and are associated with the presence of respiratory symptoms after hospital discharge. These results may suggest a role for C5a in the long-term effects of COVID-19 infection.


Subject(s)
COVID-19/blood , Complement C5a/metabolism , Patient Discharge/statistics & numerical data , Aged , COVID-19/complications , COVID-19/immunology , Female , Follow-Up Studies , Hospitalization , Humans , Immunity, Innate , Male , Middle Aged , Respiration Disorders/blood , Respiration Disorders/etiology , Respiration Disorders/immunology , Risk Factors , SARS-CoV-2 , Severity of Illness Index
4.
Emerg Microbes Infect ; 10(1): 1931-1946, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1429140

ABSTRACT

Identification of relevant epitopes is crucial for the development of subunit peptide vaccines inducing neutralizing and cellular immunity against SARS-CoV-2. Our aim was the characterization of epitopes in the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein to generate a peptide vaccine. Epitope mapping using a panel of 10 amino acid overlapped 15-mer peptides covering region 401-515 from RBD did not identify linear epitopes when tested with sera from infected individuals or from RBD-immunized mice. However, immunization of mice with these 15-mer peptides identified four peptides located at region 446-480 that induced antibodies recognizing the peptides and RBD/S1 proteins. Immunization with peptide 446-480 from S protein formulated with Freund's adjuvant or with CpG oligodeoxinucleotide/Alum induced polyepitopic antibody responses in BALB/c and C56BL/6J mice, recognizing RBD (titres of 3 × 104-3 × 105, depending on the adjuvant) and displaying neutralizing capacity (80-95% inhibition capacity; p < 0.05) against SARS-CoV-2. Murine CD4 and CD8T-cell epitopes were identified in region 446-480 and vaccination experiments using HLA transgenic mice suggested the presence of multiple human T-cell epitopes. Antibodies induced by peptide 446-480 showed broad recognition of S proteins and S-derived peptides belonging to SARS-CoV-2 variants of concern. Importantly, vaccination with peptide 446-480 or with a cyclic version of peptide 446-488 containing a disulphide bridge between cysteines 480 and 488, protected humanized K18-hACE2 mice from a lethal dose of SARS-CoV-2 (62.5 and 75% of protection; p < 0.01 and p < 0.001, respectively). This region could be the basis for a peptide vaccine or other vaccine platforms against Covid-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/standards , Cross Reactions/immunology , Epitope Mapping , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte/immunology , Humans , Immunization , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Vaccines, Synthetic/immunology
5.
EClinicalMedicine ; 25: 100454, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-638357

ABSTRACT

BACKGROUND: Identification of effective treatments in severe cases of COVID-19 requiring mechanical ventilation represents an unmet medical need. Our aim was to determine whether the administration of adipose-tissue derived mesenchymal stromal cells (AT-MSC) is safe and potentially useful in these patients. METHODS: Thirteen COVID-19 adult patients under invasive mechanical ventilation who had received previous antiviral and/or anti-inflammatory treatments (including steroids, lopinavir/ritonavir, hydroxychloroquine and/or tocilizumab, among others) were treated with allogeneic AT-MSC. Ten patients received two doses, with the second dose administered a median of 3 days (interquartile range-IQR- 1 day) after the first one. Two patients received a single dose and another patient received 3 doses. Median number of cells per dose was 0.98 × 106 (IQR 0.50 × 106) AT-MSC/kg of recipient's body weight. Potential adverse effects related to cell infusion and clinical outcome were assessed. Additional parameters analyzed included changes in imaging, analytical and inflammatory parameters. FINDINGS: First dose of AT-MSC was administered at a median of 7 days (IQR 12 days) after mechanical ventilation. No adverse events were related to cell therapy. With a median follow-up of 16 days (IQR 9 days) after the first dose, clinical improvement was observed in nine patients (70%). Seven patients were extubated and discharged from ICU while four patients remained intubated (two with an improvement in their ventilatory and radiological parameters and two in stable condition). Two patients died (one due to massive gastrointestinal bleeding unrelated to MSC therapy). Treatment with AT-MSC was followed by a decrease in inflammatory parameters (reduction in C-reactive protein, IL-6, ferritin, LDH and d-dimer) as well as an increase in lymphocytes, particularly in those patients with clinical improvement. INTERPRETATION: Treatment with intravenous administration of AT-MSC in 13 severe COVID-19 pneumonia under mechanical ventilation in a small case series did not induce significant adverse events and was followed by clinical and biological improvement in most subjects. FUNDING: None.

6.
Cell ; 181(4): 905-913.e7, 2020 05 14.
Article in English | MEDLINE | ID: covidwho-30638

ABSTRACT

We have previously provided the first genetic evidence that angiotensin converting enzyme 2 (ACE2) is the critical receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), and ACE2 protects the lung from injury, providing a molecular explanation for the severe lung failure and death due to SARS-CoV infections. ACE2 has now also been identified as a key receptor for SARS-CoV-2 infections, and it has been proposed that inhibiting this interaction might be used in treating patients with COVID-19. However, it is not known whether human recombinant soluble ACE2 (hrsACE2) blocks growth of SARS-CoV-2. Here, we show that clinical grade hrsACE2 reduced SARS-CoV-2 recovery from Vero cells by a factor of 1,000-5,000. An equivalent mouse rsACE2 had no effect. We also show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These data demonstrate that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/pharmacology , Pneumonia, Viral/drug therapy , Recombinant Proteins/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Betacoronavirus/ultrastructure , Blood Vessels/virology , COVID-19 , Chlorocebus aethiops , Humans , Kidney/cytology , Kidney/virology , Mice , Organoids/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL